Sériová komunikace regulátoru CLARE 4.0

Regulátor CLARE lze připojit k PC přes neobsazený sériový komunikační kanál COM, který je třeba nastavit následujícím způsobem:

Přenosová rychlost: **4800 bps** Parita: **žádná**

Počet datových bitů: **8** Počet stop-bitů: **1**

Každý regulátor připojený k řídícímu PC musí mít svou jedinečnou adresu, kterou je možno nastavit (režim **SEŁUP**, oblast **SErCh**, položka **SErco**).

1. Výběr regulátoru (adresa)

Před každým příkazem je nutné vyslat adresu žádaného regulátoru.

Kód: 129–143 (128+hodnota v režimu SELUP, oblast SErCh, položka SErno)

2. Ovládání klávesnice regulátoru

Při ovládání klávesnice je nutné vyslat do regulátoru jak kód stisku příslušné klávesy, tak kód uvolnění klávesy. Některé klávesy mají při delším stisku jinou specifickou funkci. Regulátor automaticky podle doby stisku klávesy provede příslušnou funkci.

Kód uvolnění klávesy: 144							
prodleva: 145	zapnuto: 148	d olů: 151	programování: 154				
informace: 146	∡ rampa: 149	potvrzení: 152	doleva: 155				
D doprava∶ 147	nahoru: 150	teplota: 153	0 zastavení: 156				

3. Displej regulátoru

Kód **157** - Regulátor odpoví vysláním 10 bytů informujících o zobrazovaných znacích na displeji, kde byte1–5 je první až pátý zelený znak, byte6 obsahuje jednotlivé LED regulátoru a byte7–10 je první až čtvrtý červený znak.

 Vše kromě byte6	byte6
bit 0 – segment zcela nahoře bit 1 – segment nahoře vpravo bit 2 – segment dole vpravo bit 3 – segment zcela dole bit 4 – segment dole vlevo	bit 0 – tečka za čtvrtým červeným znakem bit 1 – tečka za třetím červeným znakem bit 2 – tečka za druhým červeným znakem bit 3 – tečka za prvním červeným znakem bit 4 – zelená LED (program spuštěn)
bit 5 – segment nahoře vlevo	bit 5 – alarm 1
bit 6 – segment uprostřed	bit 6 – alarm 2
bit 7 — vždy 0	bit 7 – vždy 0

4. Informace regulátoru

Ve všech případech regulátor odpoví vysláním 2 bytů.

Příslušná hodnota = 256*byte1 + byte2

- Kód **158** typ pece (byte2=0 superkanthalová pec, byte2=1 drátová pec)
- Kód **159** maximální přípustná teplota (v 1°C)
- Kód **160** příkon spotřebiče (kWh = 4500 / hodnota)
- Kód **161** skutečná aktuální teplota (v 0.1°C)
- Kód **162** současně prováděný program a blok (byte1=program, byte2=blok)
- Kód 163 nastavená rampa v manuálním režimu (v 0.1°C/min)
- Kód **164** nastavená teplota v manuálním režimu (v 1°C)
- Kód **165** nastavená prodleva v manuálním režimu (v min)
- Kód **166** interval vzorkování teplot (v sec)
- Kód 169 informace o stavu regulátoru
- Kód 170 informace master / slave
- Kód 171 regulovaná teplota

5. Řízení regulátoru

- Kód 188 master vyšle data pro slave (včetně TREG)
- Kód **189** zastavení regulace (pouze při spuštěné regulaci kódem 190)
- Kód 190 spuštění regulace (jen při vypnuté regulaci, ihned se provádí Cont)
- Kód **191** regulátor pošle zaznamenaná data (žádná data: FFFFh)
- Kód **192**, kód **číslo programu**, **program** pošle program do regulátoru
- Kód 193, kód číslo programu regulátor vrací program s požadovaným číslem
- Kód **194**, **Tkon1**, **Tkon2** regulátor reguluje na T=256×Tkon1+Tkon2 (v 0,1°C)
- Kód 195, adresa, hodnota přímé programování EEPROM

Příklad:

Chceme v regulátoru číslo 1 nastavit regulační složku P na hodnotu 25 a spustit regulaci na 600°C.

Do regulátoru tedy vyšleme následující sekvenci:

- 129 (regulator 1), 195 (EEPROM), 43 (PIDP), 25 (hodnota)
- **129** (regulátor 1), **190** (spustit), **129** (regulátor 1), **194** (TREG), **2**, **88**, (= 600)

Programování:

Program je složen z bloků, každý blok tvoří 2 byte.

Program musí být ukončen příkazem STOP.

Příkaz	Displ	=	BYTE 1	BYTE 2	Jednotky	Rozsah par
Rampa	-809	r	9 + par/256	par mod 256	0,1°C/min	0-1200, 0=FAST
Teplota	4685	t	0 + par/256	par mod 256	1°C	1–Tmax
Prodleva	6L8 Y	d	42 + par/256	par mod 256	min	0-4999, 0=CONT
Čas	8 ins	С	22 + par/256	par mod 256	min	1–4999
Skok	JUNP	j	21	par	číslo prg.	1–10 (80)
Čekání	86	а	15 + par/256	par mod 256	min	0-1439 (60*h+m)
Vstup	in	i	62	par		1–4
Výstup	მიხ	0	63	par		1–8
Výkon	Pr-00	р	14	par	%	0-100, 0=OFF
Konec	SEOP	е	8	8		

Příklad:

Každý den od 6.00 do 18.00 chceme mít regulovat na 1180°C, v noci na 400°C. Požadujeme, aby se ráno regulátor dosáhl teploty za hodinu. Použijeme regulátor 1, program 5.

Program pro regulátor: c60, t1180, a18.00, rF, t400, a5.00, j5, e

Do regulátoru tedy vyšleme následující sekvenci:

129 (regulátor 1), **192** (posílání programu), **5** (číslo programu)

4, **156** (t1180), **19**, **56** (a18.00), **9**, **0** (rF), **1**, **144** (t400)

16, **44** (a5.00), **22**, **60** (c60), **21**, **5** (j5), **8**, **8** (e)